360清理大师,国家电网电子商务平台,dw

admin 2019-03-20 阅读:169
作者:阿进的写字台
主页:https://www.cnblogs.com/homejim/p/10029796.html

一、HashMap在JAVA中的怎么工作的?

基于Hash的原理

二、什么是哈希?

最简单形式的 hash,是一种在对任何变量/对象的属性应用任何公式/算法后, 为其分配唯一代码的方法。

一个真正的hash方法必须遵循下面的原则

哈希函数每次在相同或相等的对象上应用哈希函数时, 应每次返回相同的哈希码。换句话说, 两个相等的对象必须一致地生成相同的哈希码。

Java 中所有的对象都有 Hash 方法。

Java中的所有对象都继承 Object 类中定义的 hash阿兰醒醒Code() 函数的默认实现。 此函数通常通过将对象的内部地址转换为整数来生成哈希码,从而为所有不同的对象生成不同的哈希码。

三、HashMap 中的 Node 类

Map的定义是: 将键映射到值的对象。

因此,HashMap 中必须有一些机制来存储这个键值对。 答案是肯的。 HashMap 有一个内部类 Node,如下所示:

当然,Node 类具有存储为属性的键和值的映射。 key 已被标记为 final,另外还有两个字段:next 和 hash。

在下面中, 我动动爆们将会理解这些属性的必须性。

四、键值对在 HashMap中是如何存储的

键值对在 HashMap 中是以 Node 内部类的数组存放的,如下所示:

transient Node[] table;

哈希码计算出来之后, 会转换成该数组的下标, 在该下标中存储对应哈希码的键值对, 在此先不详细讲解hash碰撞的情况。

该数组的长度始终是2的次幂, 通过以下的函数实现该过程

其原理是将传入参数 (cap) 的低二进制全部变为1,最后加1即可获得对应的大于 cap 的 2 的次幂作为数组长度。

为什么要使用2的次幂作为数组的容量呢?

在此有涉及到 HashMap 的 hash 函数及数组下标的计算, 键(key)所计算出来的哈希码有可能是大于数组的容量的,那怎么办? 可以通过简单的求余运算来获得,但此方法效率太低。HashMap中通过以下的方法保证 hash 的值计算后都小于数组性饥渴的容量。

(n - 1) & hash

这也正好解释了为什么需要2的次幂作为数组的容量。由于n是2的次幂,因此,n-1类似于一个低位掩码。通过与操作,高位的hash值全部归零,保证低位才有效 从而保证获得的值都小于n。

同时,在下一次 resize() 操作时, 重新计算每个 Node 的数组下标将会因此变得很简单,具体的后文讲解。以默认的初山田裕二始值16为例

 01010011 00100101 01010100 00100101
& 00000000 00000000 00000000 00001111
----------------------------------
00000000 00000000 00000000 00000101 //高位全部归零,只保留末四天羽影院位
// 保证了计算出的值小于数组的长度 n

但是,使用了该功能之金诺瑞后,由于只取了低位,因此 hash 碰撞会也会相应的变得很严重。这时候就需要使用「扰动函数」

 static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

该函数通过将哈希码的高16位的右移后与原哈希码进行异或而得到,以上面的例子为例

此方法保证了高16位不变, 低16位根据异或后的结果改变。计算后的数组下标将会从原先的5变为0。

使用了 「扰动函数」 之后, hash 碰撞的概率将向松祚事件会下降。 有人专门做过类似的测试, 虽然使用该 「扰动函数」 并没有获得最大概率的避免 hash 碰撞,但考虑其计算性能和碰撞的概率, JDK 中使用了该方法,且只hash一次。

五、哈希碰撞及其处理

在理想的情况下, 哈希油缸管函数将每一360清理大师,国家电网电子商务平台,dw个 key 都映射到一个唯一的 bucket, 然而, 这是不可能的。哪bycicle怕是设计在良好的哈希函数,也会产生哈希冲突。

前人研究了很多哈希冲突的解决方法,在维基百科中,总结出了四大类

在 Java 的 HashMap 中, 采用了第一种 Separate chaining 方法(大多数翻译为拉链法)+链表和红黑树来解决冲突。

在 HashMap 中, 哈希碰撞之后会通过 Node 类内部的成员变量 Node next; 来形成一个链表(节点小于8)或红黑树(节点大于8, 在小于6时会从新转换为链表), 从而达到解决冲突的目的。

static final int TREEIFY_THRESHOLD = 8;王千慧裸贷
static final int UNTREEIFY_THRESHOLD = 6;

六、HashMap 的初始化

 public HashMap();
public HashMap(int initialCapacity);
public HashMap(Map
public HashMap(int initialCapacity, float loadFactor);

HashMap 中有四个构造函数, 大多是初始化容量和负载因子的操作。以 public 陆贝儿HashMap(int initialCapacity, float loadFactor) 为例

通过该函数进行了容量和负载因子的初始化,如果是调用的其他的构造函数, 则相应的负载因子和容量会使用默认值(默认负载因子=0.75, 默认容量=16)。在此时, 还没有进行存储容器 table 的初始化, 该初始化要延迟到第一次使用时进行。

七、HashMap 中哈希表的初始化或动态扩容

所谓的哈希表, 指的就是下面这个类型为内部类Node的 table 变量。

transient Node[] table;

作为数组, 其在初始化时就需要指定长度。在实际使用过程中, 我们存储的数量可能会大于该长度,因此 Hmmbta42ashMap 中定义了一个阈值参数(threshold), 在存储的容量达到指定的阈值时, 需要进行扩容。

我个人认为初始化也少女映画下载是动态扩容的一种, 只不过其扩容是容量从 0 扩展到构造函数中的数值(默认16)。 而且不需要进行元素的重hash.

7.1 扩容发生的条件

初始化的话只要数值为空或者数组长度为 0 就会进行。 而扩容是在元素的数量大于阈值(threshold)时就会触发。软瓷砖的危害

threshold = loadFactor * capacity

比如 HashMap 中默认的 loadFactor=0.75, capacity=16, 则

threshold = loadFactor * capacity = 0.75 * 16 = 12

那么在元素数量大于 12 时, 就会进行扩容。 扩容后的 capacity 和 threshold 也会随之而改变。

负载因子影响触发的阈值,因此,它的值较小的时候,HashMap 中的 hash 碰撞就很少, 此时存取的性能都很高,对应的缺点是需要较多的内存;而它的值较大时,HashMap 中的 hash 碰撞就很多,此时存取的性能相对较低,对应优点是需要较少的内存;不建议更改该默认值,如果要更改,建议进行相应的测易遥重生文试之后确定。

7.2 再谈容量为2的整数次幂和数组索引计算

前面说过了数组的容量为 2 的整次幂, 百变魔音同时, 数组的下标通过下面的代码进行计算

index = (table.length - 1) & hash

该方法除了可以很快的计算出数组的索引之外, 在扩容之后, 进行重 hash 时也会很巧妙的就可以算出新的 hash 值。 由于数组扩容之后, 容量是现在的 2 倍, 扩容之后 n-1 的有效位会比原来多一位, 而多的这一位与原容量二进制在同一个位置。 示例

这样就可以很快的计算出新的索引啦

7.3 步骤

  • 先判断是初始化还是扩容, 两者在计算newCap和newThr时会不一样
  • 计算扩容后的容量,临界值。
  • 将hashMap的临界值修改为扩容后的临界值
  • 根据扩容后的容量新建数组,然后将hashMap的table的引用指向新数组。
  • 将旧数组的元素复制到table中。在该过程中, 涉及到几种情况, 需要分开进行处理(只存有一个元素, 一般链表, 红黑树)

具体的看代码吧

7.4 注意事项

虽然 HashMap 设计的非常优秀, 但是应该尽可能少的避免尚典集成墙饰 resize(), 该过程会很耗费时间。

同时, 菲特云会员管理系统由于 hashmap 不能自动的缩小容量 因此,如果你的 hashmap 容量很大,但执行了很多 remove操作时,容量并不会减少。如果你觉得需要减少容量,请重新创建一个 hashmap。

八、HashMap.put() 函数内部是如何工作的?

在使用多次 HashMap 之后, 大体也能说出其添加元素的原理:计算每一个key的哈希值, 通过一定的计算之后算出其在哈希表中的位置,将键值对放入该位置,如果有哈希碰撞则进行哈希碰撞处理。

而其工作时的原理如下

源码如下:

在此过程中, 会涉及到哈希碰撞的解决犬奴。

九、HashMap.get() 方法内部是如何工作的?

其最终是调用了 getNode 函数。 其逻辑如下

源码如下: